Arnab’s work on graphene accepted in Nano Express


Arnab’s last PhD article on transport across extended grain boundaries in graphene is accepted in Nano Express. Here is a link to the article:
A large mismatch in the crystal orientations of adjacent grains in polycrystalline graphene could lead to large electrical resistivity across such GBs. However, in this work we show that due to the meandering nature of a GB, a few “special” regions of the GB provide conductive paths for the charge carriers to flow across them. We simulated 5000 identical GBs (i.e. GBs with the same roughness and correlation lengths) to report statistical mean and standard deviation of resistivities across GBs of varying length. Our results show that shorter GBs exhibit larger variation in resistivities as compared to the longer ones.

Adithya defends his dissertation. Congratulations Dr. Kommini!

Adithya defended his dissertation titled “TOWARDS HIGHER POWER FACTOR IN SEMICONDUCTOR THERMOELECTRICS: BANDSTRUCTURE ENGINEERING AND POTENTIAL BARRIERS,” which has led to a number of discoveries and papers, including our recent work on “Very high thermoelectric power factor near magic angle in twisted bilayer graphene,” now on arXiv:

Adithya’s work on Winger transport in 2D thermoelectrics published in Phys. Rev. Applied

In this work, we show that the thermoelectric power factor in 2D materials can be dramatically improved by adding periodic potential barriers, such as those depicted schematically in the image above. We find the optimal barrier configuration (height, width, and shape) for transport parallel and perpendicular to the barriers.

Arnab wins Outstanding TA award

Arnab K. Majee was selected as an Outstanding Teaching Assistant for his work with the Spring 2020 offering of ECE244: Modern Physics and Semiconductors for EEs. The award was announced at the annual ECE departmental ceremony, held virtually in May 2020, by the department head C. V. Hollot.

Great work, Arnab!

NETlab receives NSF CDS&E grant

Our lab has been awarded a three-year Computational and Data-enabled Science and Engineering (CDS&E) grant from the National Science Foundation to study thermal transport across interfaces between 2D materials and 3D substrates. Using first-principles methods, we will identify 2D-3D materials pairings that lead to better heat removal, enabling faster and higher-performance 2D nanoelectronics. For more info: