Cameron’s work explaining the effect of encapsulation on the thermal boundary conductance published in Advanced Materials

In collaboration with the Salehi-Khojin group at UIC, we studied the effect of encapsulation on the thermal boundary conductance (TBC) between few-layer MXene (Ti3C2) and the substrate. Cameron’s first-principles simulations explain that encapsulating the MXene with amorphous AlOx nearly doubles the TBC to the substrate because the encapsulation dampens the long-wavelength flexural phonon modes that are responsible for most of the 2D-3D heat transfer. The work has been accepted for publication in the prestigious Advanced Materials (impact factor ~22): https://doi.org/10.1002/adma.201801629

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s